TEACHING SCHOOL ALLIANCE

Calculation Policy

Discovery Schools
Academy Trust

Discovery Schools

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Year 1 Vocabulary: sum, total, plus, add, together, more, parts and wholes, 'is equal to', 'is the same as'	Combine two parts to make a whole Combining two sets of objects (aggregation)	Represent objects as dots/crosses within a part-whole diagram.	Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. Missing numbers
	Progress onto adding on to a set (augmentation): Encourage children to count on, rather than count all.	Counting on with a given number line or number track	Missing numbers need to be placed in all possible places. $2+4=\square$ $\square=2+4$ $4+\square=6 \quad 6=\square+2$ Encourage children to use an empty number track.

Discovery Schools Academy Trust

	Concrete	Pictorial	Abstract
Year 1 continued...	Regrouping to make 10 Using tens frames or Numicon. e.g. $6+5$	Children to draw onto a ten frame.	Develop an understanding of equality. e.g. $6+5=10+1$ Moving onto missing numbers: $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Year 2 Vocabulary: sum, total, plus, add, together, more, parts and wholes, 'is equal to', 'is the same as'	TO + 0 using base 10 equipment. $41+8$	Children to draw representations	Expanded column addition.

+ Addition

Discovery Schools Academy Trust

	Concrete	Pictorial	Abstract
Year 2 continued...	To + To using base 10 eauipment. $\begin{array}{ll\|l} 47+25 & \text { Tens } & \text { Ones } \\ \hline & & \\ & & \\ & & \\ \hline \end{array}$	Represent base 10 using pictures.	Expended column addition
Year 3 Vocabulary: sum, total, plus, add, together, more, parts and wholes, 'is equal to', 'is the same as'	HTO + HTO using base 10 equipment or place value counters.	Represent base 10 or place value counters with pictures.	Expanded column addition Progessing to:
Year 4, 5 \& 6 As above	As above, using larger numbers.	As above, using larger numbers.	As above, using larger numbers.

- Subtraction

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Year 1 Vocabulary: Subtraction, subtract, take away, distance between, difference		Children to draw the concrete resources they are using and cross out the correct amount. The bar model can be used. Q இ®O	Part-whole diagram and equality $\begin{aligned} & 4-3= \\ & 1=4-3 \end{aligned}$
than, minus, less than, equals = same as, most, least, pattern, odd, even, digit	$6-2=4$	Children to represent what they see pictorially e.g. ```\(\square 1]\) \(1 / 2 / 3 / 4566 / 789110\)``` Use a given number line or number track.	Encourage children to use an empty number line.

Year 1 continued..	Concrete	Pictorial	Abstract
	Making 10 using ten frames. 14-5	Children to present the tens frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used to illustrate what they need to calculate. $\begin{aligned} & 00000000 \\ & 00000 \longleftarrow ? \end{aligned}$	Find the difference between 8 and 5 . 8 - 5 , the difference is \qquad Children to explore why 9-6 = 8-5=7-4 have the same difference.

Yr Krp \&

Vocabulary

Year 2

Vocabulary:
Subtraction, subtract, take away, difference, difference between, minus Tens, ones, partition Near multiple of 10, tens boundary Less than, one less, two less... ten less... one hundred less

Concrete

Use partitioning of tens and ones to subtract a 2 digit number from another 2 digit number with no regrouping involved.

Children to present the 2 digit number using a pictorial image.
$37-12($ subtract 10, subtract 2$)=25$

Tins	Ones
$11+$	$11111 x+$

Column method using base 10.
48-7

Children to represent the base 10 pictorially were no renaming is required

Children to use a number line to show partitioning of the 2 digit number 10 and 2, then to subtract this from 37 separately.

$$
37-12=
$$

Children to use the expanded form of column subtraction.

- Subtraction

- Subtraction

Discovery Schools
Academy Trust

	Concrete	Pictorial	Abstract
Year 3 Vocabulary: Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2	Column method using place value counters. 234-88	Represent the place value counters pictorially ; remembering to show what has been renamed	Expanded column method Formal column method. Children must understand what has happened when they have crossed out digits.
Years 4, 5 and 6	Continue to follow concrete, pictorial and abstract model from Year 3 to meet the needs of each specific year group.		

x Multiplication

Discovery Schools
Academy Trust

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Year 1 Vocabulary: multiplication, lots of, groups of, double, arrays, repeated addition	Repeated grouping/repeated addition Washing line, and other practical resources or counting Concrete objects. Numicon; bundles of straws, bead strings etc 枆 Le wiow	Children to represent the practical resources in a picture and using a number line	$2 \times 5=10$ $2+2+2+2+2=10$ 2 multiplied by 5 5 pairs 5 jumps of 2 Abstract number line showing 5 jumps of 2
	Use arrays to understand multiplication can be done in any order (commutative). Counters and other objects can be used $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially $\begin{gathered} 5 \times 2=10 \\ \begin{array}{c} 00000 \\ 00000 \\ 2 \times 5=10 \end{array} \end{gathered}$	$\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10=2 \times 5 \\ & 10=5 \times 2 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

x Multiplication

Discovery Schools Academy Trust

Yr Grp \＆Vocabulary	Concrete	Pictorial	Abstract
Continue to build on the understanding of Year 1 strategies and vocabulary Year 2 Vocabulary：facts， odd，even， commutative， inverse	Doubling－begin to develop an understanding doubling of 2 digit numbers up to 50 16×2	Children may start to represent the materials pictorially	Begin to use jottings towards recording the written method
Continue to build on the understanding of Year 2 strategies and vocabulary Year 3 Vocabulary：scaling	Partition to multiply using Numicon，base 10 or Cuisenaire rods 4×15 	10 s 1 s 1 \ldots. 1 \ldots. \ldots \ldots 0	Children to be encouraged to show the steps they have taken $\begin{aligned} 10 \times 4 & =40 \\ 5 \times 4 & =20 \\ 40+20 & =60 \end{aligned}$

x Multiplication

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Year 3 continued...	Grid method using place value counters or base 10 18×3 -OOOOOOOO 000000000 000000000	10 8 3 0 00000000 0 00808080 30 24	10 8 3 30 24
	Being to use expanded column method (long multiplication) using place value counters or base 10 23×2		
	Begin to use formal column method (short multiplication) with place value counters or base 10 3×23	$10 s$ $1 s$ 00 000 00 000 00 000 6 9	Record what is being done to show understanding $\left.\begin{array}{ll} 3 \times 23 & 3 \times 20=60 \\ / \backslash & 3 \times 3=9 \\ 20 & 6 \end{array}\right)$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$

x Multiplication

Division

Discovery Schools Academy Trust

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array	Sharing using a range of objects $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$3 3 Children should also be encouraged to use their 2 times table facts.
	Group AND share small quantities- understanding the difference between the two concepts. Sharing Develops importance of one-to-one correspondence. $15+5=3$ See the attached PowerPoint.	Children to draw grouping and sharing small quantities. $15 \div 5=3$ Sharing $\div(:) \odot$ Grouping \qquad	

Discovery Schools
Academy Trust

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Year 1/2	Count how many groups go in to the dividend. $6 \div 2$	Children to represent counting how many groups go in to the dividend	Abstract number line to represent that equal groups that have been counted.
Year 2 Vocabulary: group in pairs, 3s ... 10s etc equal groups of divide, \div, divided by, divided into, remainder	Use of cubes to illustrate the whole- and parts of division. 888898809898989898090 $01010+10101$	Use the bar model to show grouping.	

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Vocabulary: Inverse group, groups of, lots of, array, group in pairs, 3s ... 10s etc equal groups of divide, \div, divided by, divided into, remainder	$\mathrm{TO} \div \mathrm{O}$ with remainders using lollipop sticks Cuisenaire rods, above a ruler can also be used $13 \div 4=$ Use of Iollipops sticks to form wholes- squares are made because we are dividing by 4 . There are 3 whole squares, with 1 left over.	Children to represent the lollipop sticks pictorially over.	$13 \div 4=3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'
	Using grouping to become more efficient at dividing larger numbers.	Use grouping on a bar model.48 40 $(10$ groups $)$ 8 $(2$ groups$48 \div 4=12$	Becoming more efficient using a number line Children need to be able to partition the dividend in different ways. $\begin{aligned} & 48 \div 4= 12 \\ &+40 \\ & 10 \text { groups } \\ &+8 \\ & \hline \end{aligned}$

\div Division

Discovery Schools
Academy Trust

Yr Grp \& Vocabulary	Concrete	Pictorial	Abstract
Year 4 Vocabulary: divide, divided by, divisible by, divided into share between, groups of factor, factor pair, multiple times as (big, long, wide ...etc) equals, remainder, quotient, divisor inverse	Sharing using place value counters. $42 \div 3=14$	Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to show the process. $\begin{aligned} & 42 \div 3 \\ & 40=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$
Year 5 Vocabulary: divide, divided by, divisible by, divided into share between, groups of factor, factor pair, multiple times as (big, long, wide ...etc) equals, remainder, quotient, divisor inverse	Short division using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11	Represent the place value counters pictorially.	Short division $\begin{array}{r} 122 \\ 7 \longdiv { 8 ^ { 1 } 5 ^ { 1 4 } } \end{array}$

\div Division

Discovery Schools
Academy Trust

\div Division

Yr Grp \& Vocabulary

Abstract

Year 6 continued...

Chunking for long division:
Children write a list of key facts before calculating.

97
194 (2x)
291 (3x)
388 (4x)
485 (5x)
$970(10 x)$
1940 (20x)
3880 (40x)
7760 (80x)

